Isoperimetric Problems of the Calculus of Variations on Time Scales

نویسندگان

  • Rui A. C. Ferreira
  • Delfim F. M. Torres
  • RUI A. C. FERREIRA
  • DELFIM F. M. TORRES
چکیده

We prove a necessary optimality condition for isoperimetric problems on time scales in the space of delta-differentiable functions with rdcontinuous derivatives. The results are then applied to Sturm-Liouville eigenvalue problems on time scales.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isoperimetric problems on time scales with nabla derivatives

We prove a necessary optimality condition for isoperimetric problems under nabla-differentiable curves. As a consequence, the recent results of [M.R. Caputo, A unified view of ostensibly disparate isoperimetric variational problems, Appl. Math. Lett. (2008), doi:10.1016/j.aml.2008.04.004], that put together seemingly dissimilar optimal control problems in economics and physics, are extended to ...

متن کامل

An analytic study on the Euler-Lagrange equation arising in calculus of variations

The Euler-Lagrange equation plays an important role in the minimization problems of the calculus of variations. This paper employs the differential transformation method (DTM) for finding the solution of the Euler-Lagrange equation which arise from problems of calculus of variations. DTM provides an analytical solution in the form of an infinite power series with easily computable components. S...

متن کامل

Necessary and Sufficient Conditions for Local Pareto Optimality on Time Scales

We study a multiobjective variational problem on time scales. For this problem, necessary and sufficient conditions for weak local Pareto optimality are given. We also prove a necessary optimality condition for the isoperimetric problem with multiple constraints on time scales.

متن کامل

NON-POLYNOMIAL SPLINE FOR THE NUMERICAL SOLUTION OF PROBLEMS IN CALCULUS OF VARIATIONS

A Class of new methods based on a septic non-polynomial spline function for the numerical solution of problems in calculus of variations is presented. The local truncation errors and the methods of order 2th, 4th, 6th, 8th, 10th, and 12th, are obtained. The inverse of some band matrixes are obtained which are required in proving the convergence analysis of the presented method. Convergence anal...

متن کامل

Isoperimetric Conjugate Points with Application to the Stability of DNA Minicircles

A conjugate point test determining an index of the constrained second variation in one-dimensional isoperimetric calculus of variations problems is described. The test is then implemented numerically to determine stability properties of equilibria within a continuum mechanics model of DNA minicircles.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008